ohctechv3/.svn/pristine/ad/ad46bfa70386c99661f1aa41c9b296e2d91c0272.svn-base
2024-10-28 15:03:36 +05:30

158 lines
4.8 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* eslint-disable */
const BezierFactory = (function () {
/**
* BezierEasing - use bezier curve for transition easing function
* by Gaëtan Renaudeau 2014 - 2015 MIT License
*
* Credits: is based on Firefox's nsSMILKeySpline.cpp
* Usage:
* var spline = BezierEasing([ 0.25, 0.1, 0.25, 1.0 ])
* spline.get(x) => returns the easing value | x must be in [0, 1] range
*
*/
var ob = {};
ob.getBezierEasing = getBezierEasing;
var beziers = {};
function getBezierEasing(a, b, c, d, nm) {
var str = nm || ('bez_' + a + '_' + b + '_' + c + '_' + d).replace(/\./g, 'p');
if (beziers[str]) {
return beziers[str];
}
var bezEasing = new BezierEasing([a, b, c, d]);
beziers[str] = bezEasing;
return bezEasing;
}
// These values are established by empiricism with tests (tradeoff: performance VS precision)
var NEWTON_ITERATIONS = 4;
var NEWTON_MIN_SLOPE = 0.001;
var SUBDIVISION_PRECISION = 0.0000001;
var SUBDIVISION_MAX_ITERATIONS = 10;
var kSplineTableSize = 11;
var kSampleStepSize = 1.0 / (kSplineTableSize - 1.0);
var float32ArraySupported = typeof Float32Array === 'function';
function A(aA1, aA2) { return 1.0 - 3.0 * aA2 + 3.0 * aA1; }
function B(aA1, aA2) { return 3.0 * aA2 - 6.0 * aA1; }
function C(aA1) { return 3.0 * aA1; }
// Returns x(t) given t, x1, and x2, or y(t) given t, y1, and y2.
function calcBezier(aT, aA1, aA2) {
return ((A(aA1, aA2) * aT + B(aA1, aA2)) * aT + C(aA1)) * aT;
}
// Returns dx/dt given t, x1, and x2, or dy/dt given t, y1, and y2.
function getSlope(aT, aA1, aA2) {
return 3.0 * A(aA1, aA2) * aT * aT + 2.0 * B(aA1, aA2) * aT + C(aA1);
}
function binarySubdivide(aX, aA, aB, mX1, mX2) {
var currentX,
currentT,
i = 0;
do {
currentT = aA + (aB - aA) / 2.0;
currentX = calcBezier(currentT, mX1, mX2) - aX;
if (currentX > 0.0) {
aB = currentT;
} else {
aA = currentT;
}
} while (Math.abs(currentX) > SUBDIVISION_PRECISION && ++i < SUBDIVISION_MAX_ITERATIONS);
return currentT;
}
function newtonRaphsonIterate(aX, aGuessT, mX1, mX2) {
for (var i = 0; i < NEWTON_ITERATIONS; ++i) {
var currentSlope = getSlope(aGuessT, mX1, mX2);
if (currentSlope === 0.0) return aGuessT;
var currentX = calcBezier(aGuessT, mX1, mX2) - aX;
aGuessT -= currentX / currentSlope;
}
return aGuessT;
}
/**
* points is an array of [ mX1, mY1, mX2, mY2 ]
*/
function BezierEasing(points) {
this._p = points;
this._mSampleValues = float32ArraySupported ? new Float32Array(kSplineTableSize) : new Array(kSplineTableSize);
this._precomputed = false;
this.get = this.get.bind(this);
}
BezierEasing.prototype = {
get: function (x) {
var mX1 = this._p[0],
mY1 = this._p[1],
mX2 = this._p[2],
mY2 = this._p[3];
if (!this._precomputed) this._precompute();
if (mX1 === mY1 && mX2 === mY2) return x; // linear
// Because JavaScript number are imprecise, we should guarantee the extremes are right.
if (x === 0) return 0;
if (x === 1) return 1;
return calcBezier(this._getTForX(x), mY1, mY2);
},
// Private part
_precompute: function () {
var mX1 = this._p[0],
mY1 = this._p[1],
mX2 = this._p[2],
mY2 = this._p[3];
this._precomputed = true;
if (mX1 !== mY1 || mX2 !== mY2) { this._calcSampleValues(); }
},
_calcSampleValues: function () {
var mX1 = this._p[0],
mX2 = this._p[2];
for (var i = 0; i < kSplineTableSize; ++i) {
this._mSampleValues[i] = calcBezier(i * kSampleStepSize, mX1, mX2);
}
},
/**
* getTForX chose the fastest heuristic to determine the percentage value precisely from a given X projection.
*/
_getTForX: function (aX) {
var mX1 = this._p[0],
mX2 = this._p[2],
mSampleValues = this._mSampleValues;
var intervalStart = 0.0;
var currentSample = 1;
var lastSample = kSplineTableSize - 1;
for (; currentSample !== lastSample && mSampleValues[currentSample] <= aX; ++currentSample) {
intervalStart += kSampleStepSize;
}
--currentSample;
// Interpolate to provide an initial guess for t
var dist = (aX - mSampleValues[currentSample]) / (mSampleValues[currentSample + 1] - mSampleValues[currentSample]);
var guessForT = intervalStart + dist * kSampleStepSize;
var initialSlope = getSlope(guessForT, mX1, mX2);
if (initialSlope >= NEWTON_MIN_SLOPE) {
return newtonRaphsonIterate(aX, guessForT, mX1, mX2);
} if (initialSlope === 0.0) {
return guessForT;
}
return binarySubdivide(aX, intervalStart, intervalStart + kSampleStepSize, mX1, mX2);
},
};
return ob;
}());
export default BezierFactory;